

Optimizing Energy Savings from Direct DC in U.S. Residential Buildings

ENVIRONMENTAL ENERGY
TECHNOLOGIES DIVISION

Vagelis Vossos, Karina Garbesi, Hongxia Shen, Gabriel Burch`

With contributions from Jonathon Taylor, Tony Lai¹, Eric Frye²

Lawrence Berkeley National Laboratory

1 Cyclotron Road

Berkeley, CA

¹ Delta Products Corporation, ²Real Goods Solar

EETD Seminar Series

July 15, 2011

Support

DOE, Office of Energy Efficiency and Renewable Energy, Building Technologies Program

Robert Van Buskirk and Chris Marnay

Direct DC Power Systems for Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus

Part of Larger Project with 4 Deliverables

- 1. 'Catalog' of DC Appliances and Power Systems
- 2. Evaluation of DC Network Systems and Technologies (Marnay)
- 3. Direct DC Energy Savings Modeling and Forecast
- 4. Direct DC Power System Research Plan Recommendations

Direct DC Power Systems for Efficiency and Renewable Energy Integration with a Residential and Small Commercial Focus

Part of Larger Project with 4 Deliverables

1. 'Catalog' of DC Appliances and Power Systems

*

3. Direct DC Energy Savings Modeling and Forecast

Project Context:

- Potential Energy Savings from Direct-DC in U.S.
 Residential Buildings
 - 30-year national energy savings potential
 - Rapid increase in penetration of building-sited PV
 - → Need for on-site energy storage
 - Relevant context for foreseeable future →
 PV in net-metered houses (not off-grid)
 - Emergence of electric vehicles

Main distinctions between this work and prior studies

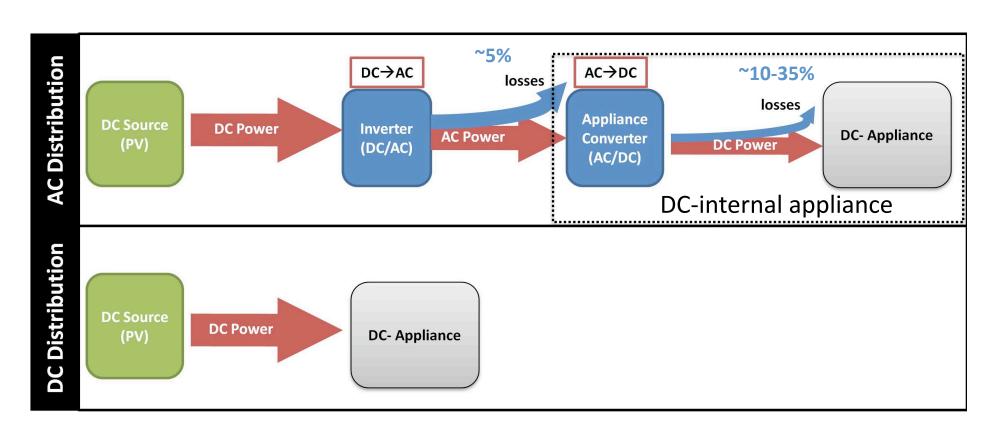
- 1. Energy impacts determined for <u>net-metered</u> system accounting for timing of the load (complexity)
 - Directly determines if DC power is used directly
 - or if AC-grid power must be rectified to supply DC load
- 2. Includes electricity storage
- 3. Detailed consideration AC vs. DC end-uses
- 4. Clearly distinguishes energy savings from
 - increased adoption of DC-based technologies (which can be run of AC or DC) versus
 - direct-use of DC power

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- > Results
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- Discussion & future research recommendations

Introduction

- Background
- Why use direct-DC in residential buildings?
- Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

BATTLE of the Currents

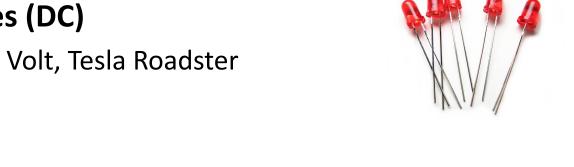

First power systems were based on DC

DC was Implemented with small, distributed power plants

AC enabled long distance power transmission

What is "Direct-DC"?

Providing power *directly* from a DC source to end-uses

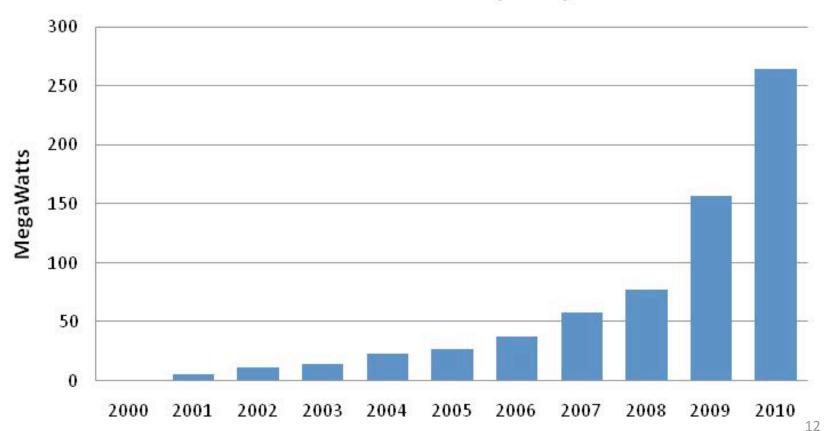

But not that simple in real houses.

Introduction

- Background
- Why use direct-DC in residential buildings?
- Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

1. Increased use of DC products

- DC-internal products (currently run on AC), among most efficient on market
 - Consumer electronics
 - Electronic lighting
 - DC motors (brushless), especially with variable speed drives
- And Electric Vehicles (DC)
 - Nissan Leaf, Chevy Volt, Tesla Roadster



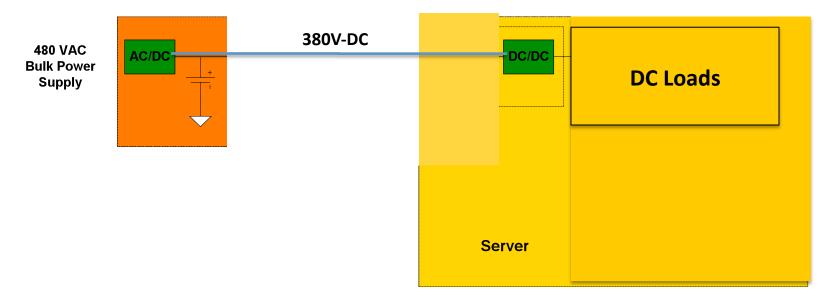
2. Rapid increase in U.S. residential PV installations

- >20% yearly growth rate between 2000-2010
- Other renewable DC sources: Small Wind, Micro Hydro (<5% of market share)

Residential US PV Capacity

3. Emergence of DC power standards

- EMerge Alliance: 24V standard, 380V coming
- Products that meet the EMerge 24V standard:
 - Ceiling suspension system enables DC distribution without additional wiring (Armstrong)
 - Direct-DC lighting with PV (Nextek Power Systems)



4. Demonstrated energy savings in DC data centers

(Ton, Fortenbery and Tschudi, 2007)

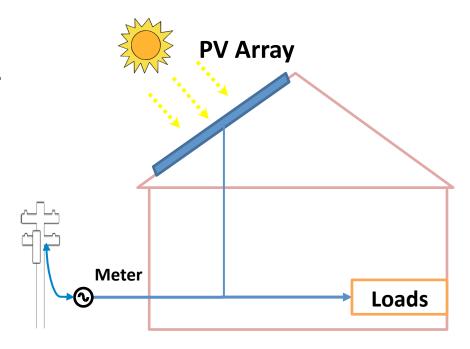
- Eliminated DC/AC, AC/DC conversions between UPS and PSU
- Demonstrated 7.2 28.2% energy savings, depending on system conversion efficiencies

Introduction

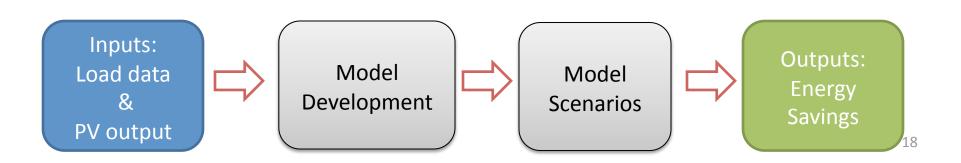
- Background
- Why use direct-DC in residential buildings?
- Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

Given the uncertainties inherent in fundamentally new technologies, and to determine whether more research is justified, we wanted to estimate:

- How much energy can Direct-DC save at the house level?
- How much will it save under different scenarios?
 - Energy storage
 - Shifted house loads
 - Add electric vehicle load
- Consider effects of
 - climate
 - power conversion efficiencies (AC/DC, DC/AC, DC/DC)


- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives

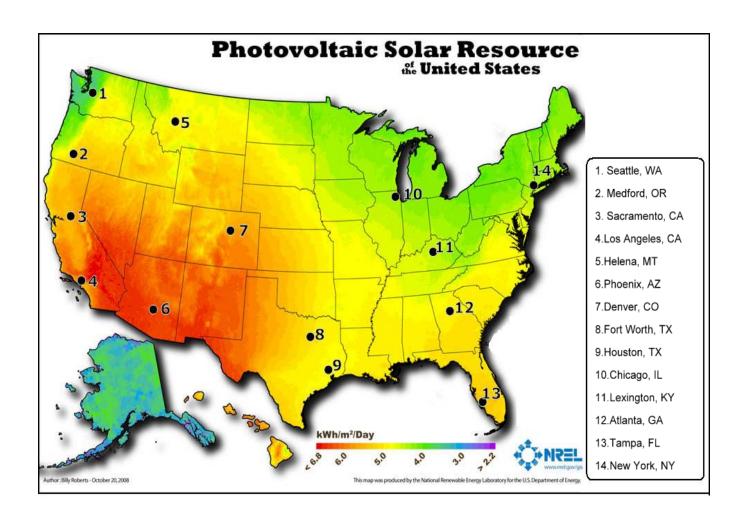
> Methods


- Overview
- Model inputs
- Model development
- Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

Hypothetical Household:

- ➤ Rooftop PV system
- ➤ Grid-connected
- ➤ With net-metering

Conceptual framework of the modeling:


- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives

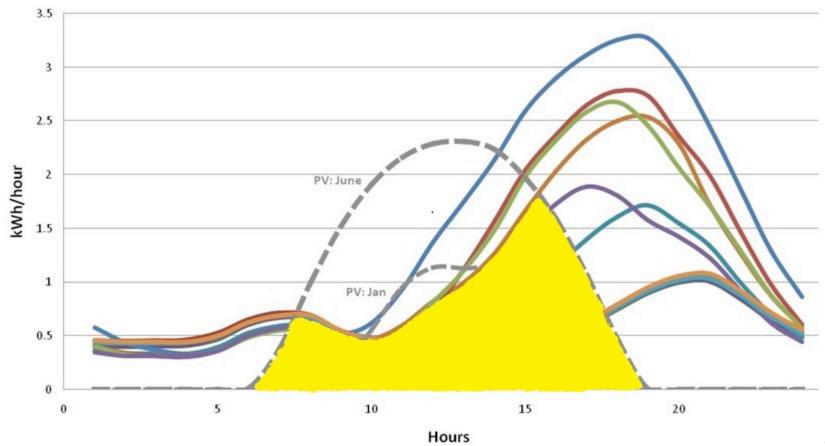
> Methods

- Overview
- Model inputs
- Model development
- Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

INPUTS: Residential load data (simulated) & PV output data for 14 U.S. cities from NREL's Solar Advisor Model (SAM)

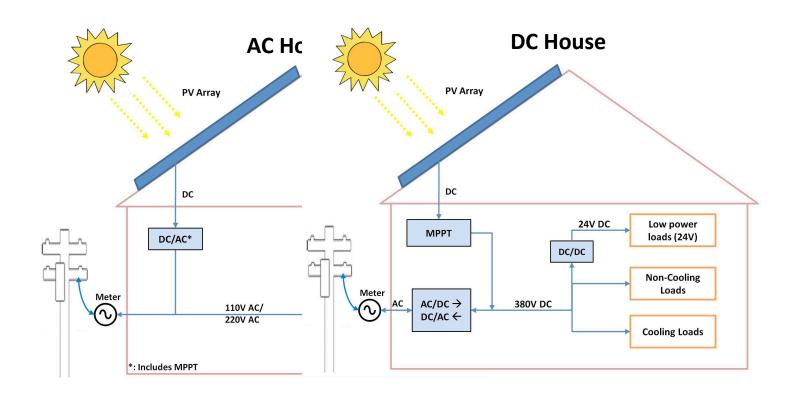
- Both are average hourly data (8760 data points for 1 year)
- Opportunity to test effect of climate

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives

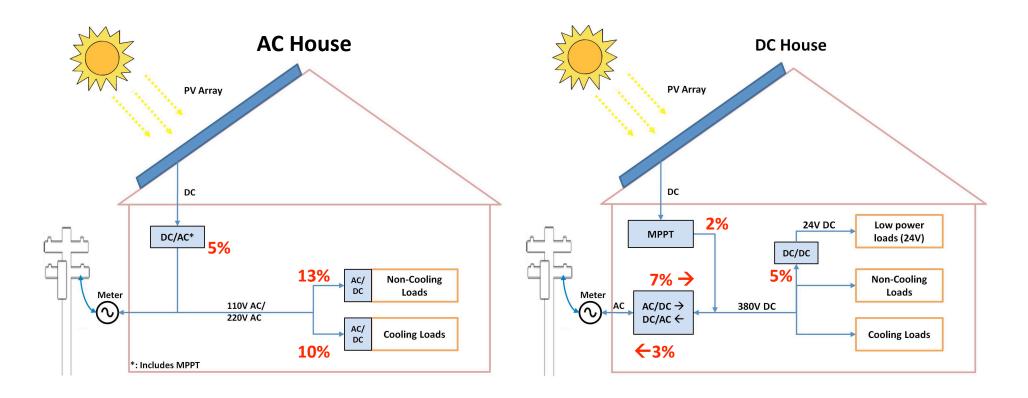

> Methods

- Overview
- Model inputs
- Model development
- Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

Distinguished cooling from non-cooling Loads

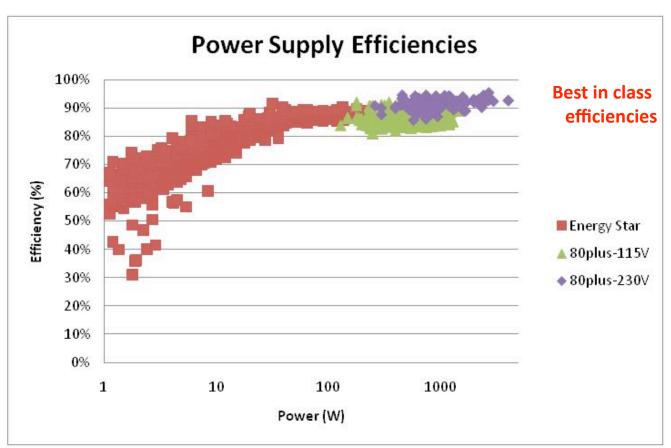

- Cooling load: Most significant load, influenced by solar irradiance
- Load shifting analysis: 2-hr shift (pre-cooling, house = thermal storage)

Sacramento: Average Monthly load

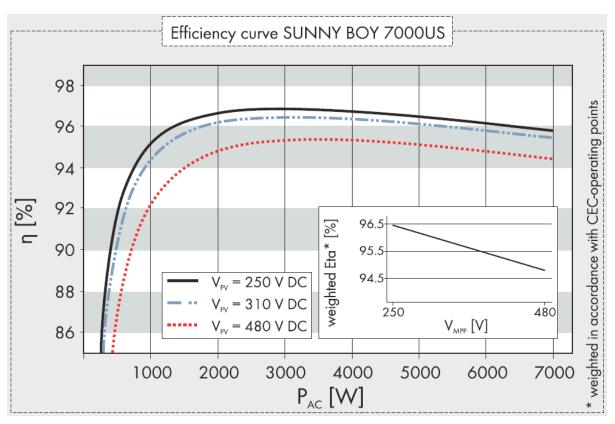


AC-house versus DC-house energy Use

- PV system sized for <u>zero-net</u> electricity in the AC-house
 - Same PV system on the DC house
- AC and DC-house loads identical, except for power converters.


Power losses (Conversion efficiencies)

Sources of power loss data


- Power system components: CEC data, Equipment spec sheets, Industry experts
- Appliance AC-DC Converters: Energy Star, 80plus data

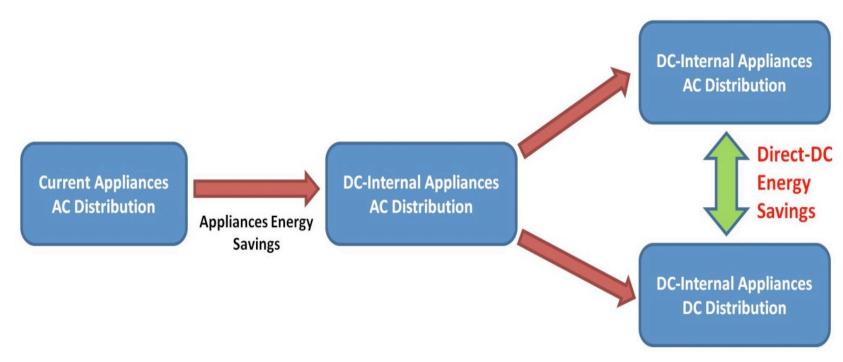
Example: Appliance converter data

Note on power converters

- > Their efficiencies vary for full-load versus partial-load conditions
- Model assumes:
 - full-load for base case and
 - partial load for sensitivity analysis

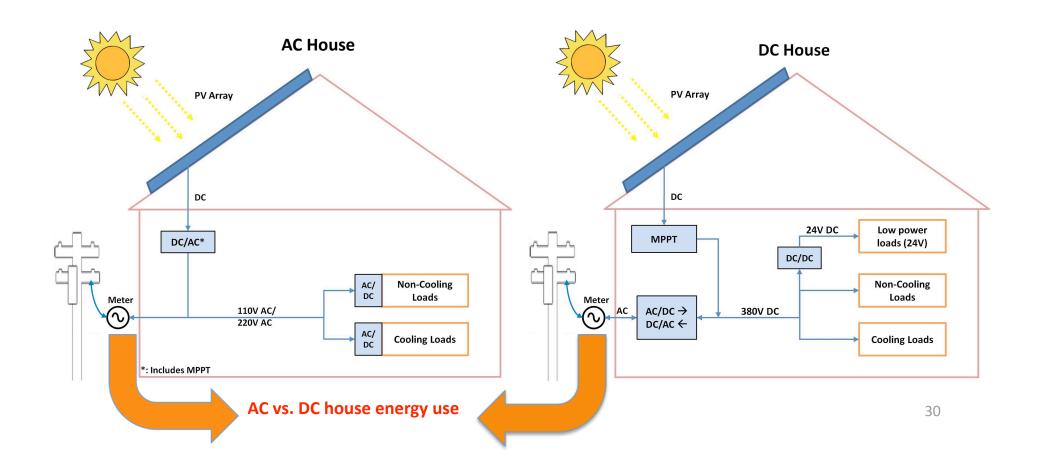
House loads modeling

- Identical loads for AC & DC house (except AC-DC converters)
 - Assumed DC-internal appliances in AC-house
 - Since DC loads are generally more efficient, we modified today's AC load to reflect those savings
 - DC-house load = DC-part of AC-house load
 - Subtracted off AC-DC conversion efficiencies
 - Used aggregate loads for model input
 - Cooling
 - Non-cooling
 - High and low voltage for DC house


Appliance analysis for model inputs (running on AC)

- To determine what end-uses can run on DC, we identified DC-based technologies that provide the internal functions within appliances
- Determined energy savings inherent in switching to DC
- Considered 32 household end-uses

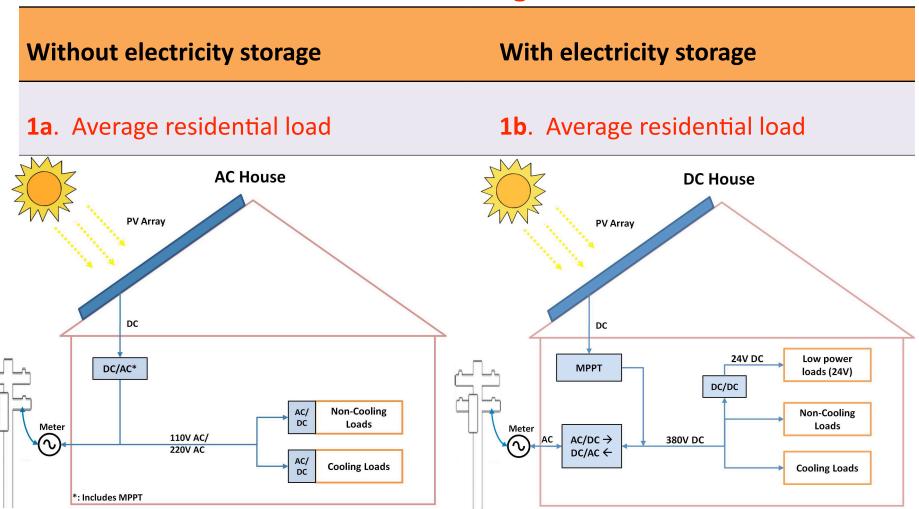
Functions w/in Appliances	DC-Internal Best Technology	Energy Savings relative to Standards		
Lighting	Electronic (fluorescent & LED)	73%		
Heating	Heat pump operated by BDCPM (for space and water)	50%		
Cooling	BDCPM operating variable speed	30% – 50% (for VSD) 5-10% (motor, depending on size)		
Mechanical work (fluids or solids)	BDCPM	5 – 15% (depending on size)		
Cooking	Induction cooker	12%		
Intelligence (computation)	Same	0		
Notes: BDCPM = brushless DC permanent magnet motor; VSD = variable speed drive				


Model runs

- Switch to more efficient, DC-internal appliances:
 - All end-uses can run on DC
 - 37% energy savings for cooling loads (weighted average)
 - 33% energy savings for non-cooling loads (weighted average)
- Direct-DC energy savings <u>exclude</u> the savings from switching to DC-internal appliances other than the AC-DC power conversion

How the model calculates savings

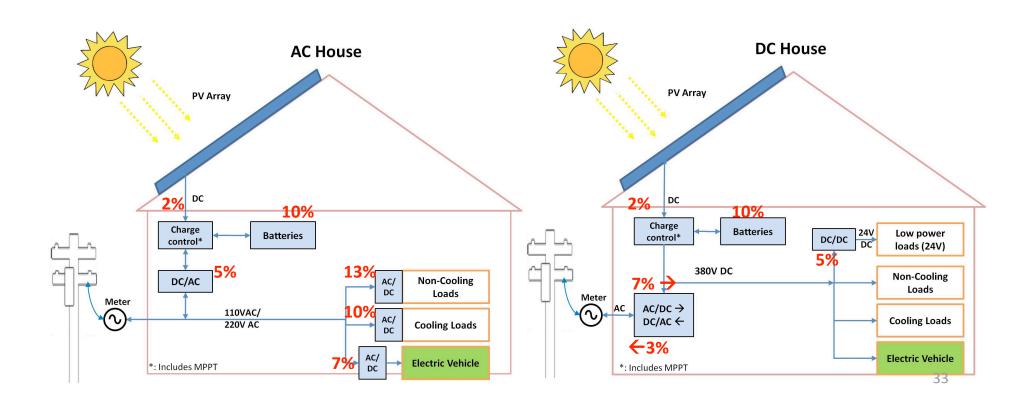
- Deterministic spreadsheet model
- Tracks the hourly impact of net electricity at the electric meter for both houses
- The reported energy savings are the direct-DC savings as percent of total AC- house load for each city


- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives

> Methods

- Overview
- Model inputs
- Model development
- Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

Six house configurations

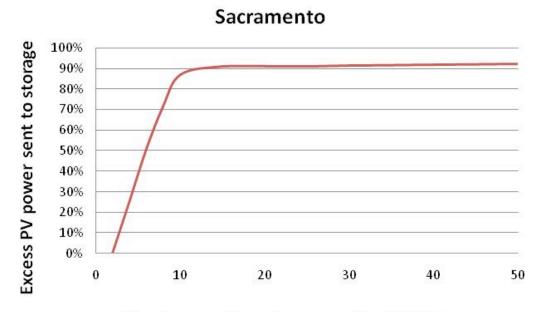

Base Case Configurations

Configurations with storage, load shifting & electric vehicle

ASSUMPTIONS

- Battery only charged by PV
- EV acts only as a DC load (EV battery does not provide storage for house)
- Battery and EV charging voltage: 380V-DC
- Load shifting : Pre-cool by 2hrs

Electric vehicle & storage assumptions


Electric vehicle:

- EV battery capacity based on Nissan Leaf (24kWh)
- 8 kWh average charging each night
- Charging occurs at night (10 pm 5am)
- The PV system size remains the same (no longer net-zero energy AC-house)

House storage system:

Minimum charge: 2kWh

Maximum charge: 10kWh

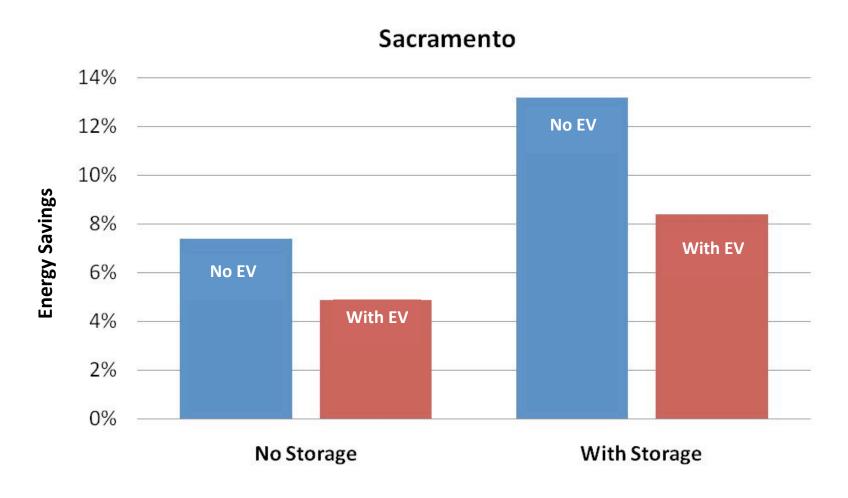
Maximum charging capacity (kWh)

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios

> Results

- All scenarios
- Sensitivity analysis
- **Conclusions**
- > Discussion & future research recommendations

Average residential load without (1a) & with storage (1b)


		DC DIRECT SAVINGS AS PERCENT OF TOTAL AC HOUSE LOAD	
CITIES	Cooling Load Fraction	No-storage	Storage
Phoenix	66%	7.6%	11%
Tampa	56%	8.0%	12%
Houston	48%	7.9%	12%
Fort Worth	43%	7.6%	12%
Sacramento	32%	7.4%	13%
Atlanta	28%	7.5%	13%
Lexington	17%	7.4%	13%
Medford	17%	7.2%	13%
Los Angeles	15%	7.3%	14%
New York	11%	7.3%	14%
Denver	10%	7.2%	14%
Helena	9%	7.2%	13%
Chicago	8%	7.2%	13%
Seattle	3%	7.0%	13%
	AVERAGES:	7.4%	12.8%

Average residential load without (2a) & with storage (2b)

Cooling load shifted 2hrs earlier

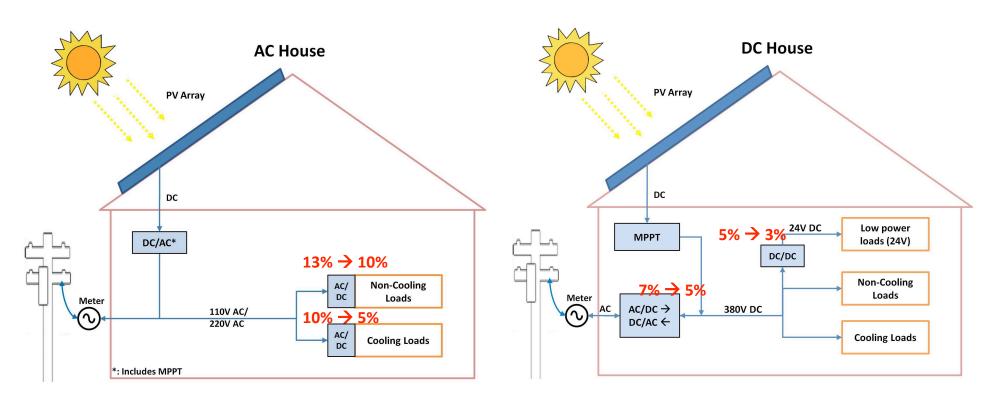
		DC DIRECT SAVINGS AS PERCENT OF TOTAL AC HOUSE LOAD			
CITIES	Cooling Load Fraction	Non-storage	Storage		
Phoenix	66%	8.3%	11%		
Tampa	56%	8.5%	12%		
Houston	48%	8.3%	12%		
Fort Worth	43%	8.2%	12%		
Sacramento	32%	8.2%	13%		
Atlanta	28%	8.0%	13%		
Lexington	17%	7.8%	13%		
Medford	17%	7.6%	13%		
Los Angeles	15%	7.6%	13%		
New York	11%	7.5%	14%		
Denver	10%	7.4%	14%		
Helena	9%	7.4%	13%		
Chicago	8%	7.4%	13%		
Seattle	3%	7.1%	13%		
	AVERAGES:	7.8%	12.9%		

Average residential load with EV without (1a vs. 3a) & with storage (1b vs. 3b)

Because EV is assumed to be charged at night it is not a direct DC load, therefore reduces **fractional (not absolute)** direct-DC savings

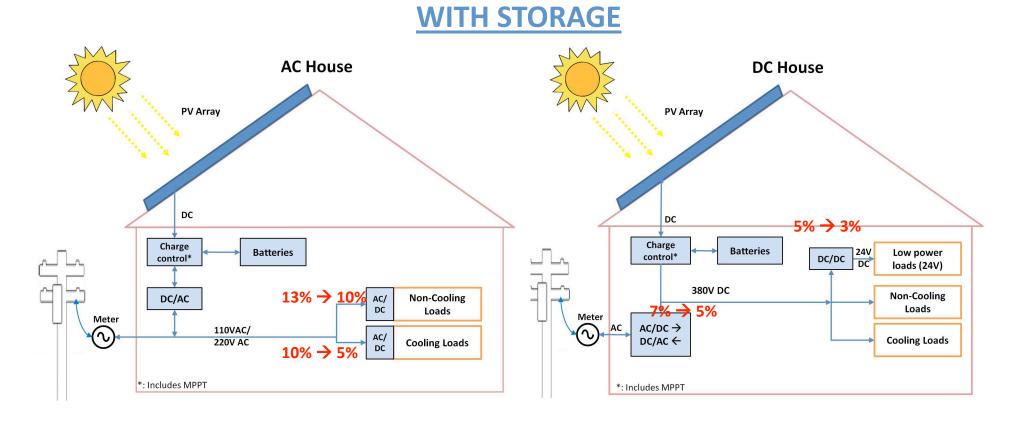
Modeling Outline

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios


> Results

- All scenarios
- Sensitivity analysis
- **Conclusions**
- Discussion & future research recommendations

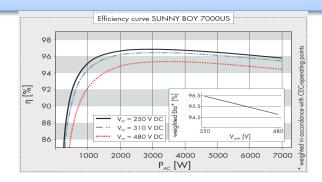
1. Consider technology Improvements


- A. Improve AC-house AC/DC appliance converters efficiencies
- B. Improve DC-house power converter efficiencies

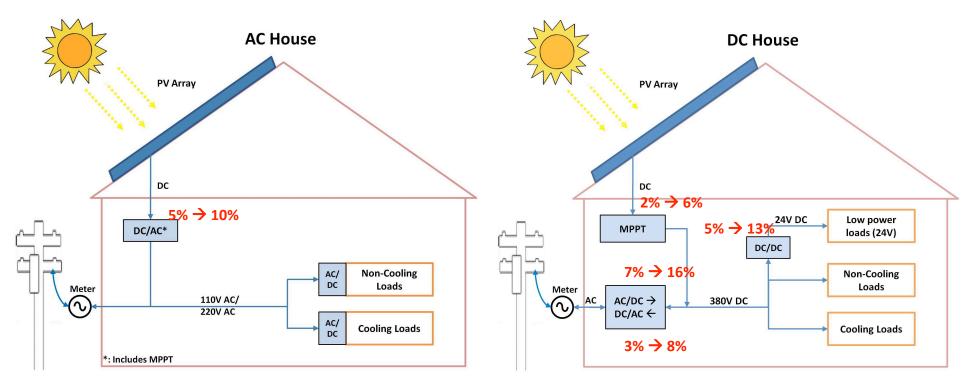
NO STORAGE

1. Consider technology Improvements

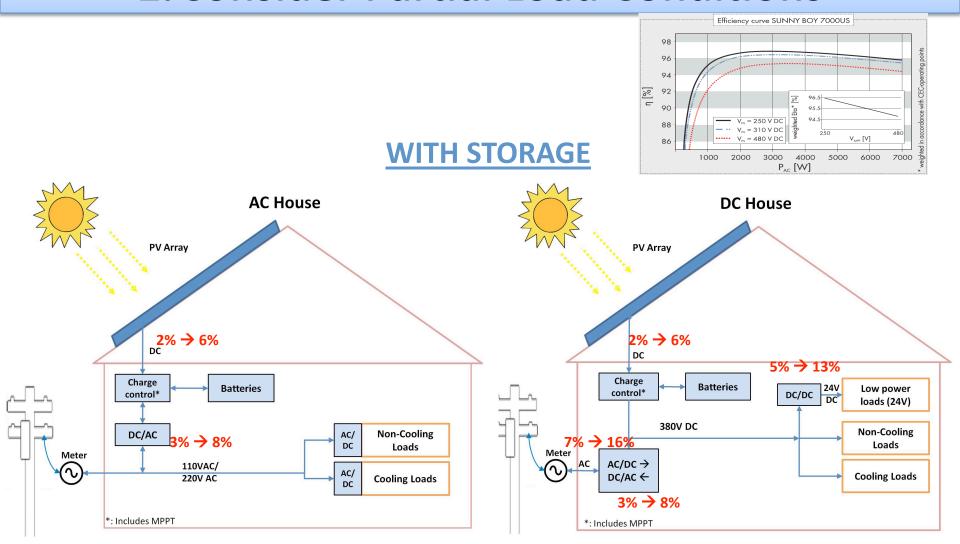
- A. Improve AC-house AC/DC appliance converters efficiencies
- B. Improve DC-house power converter efficiencies

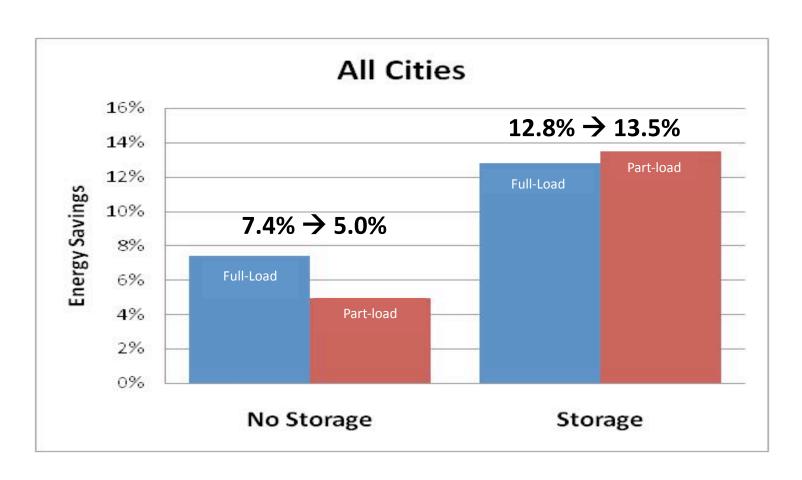


1. Consider technology Improvements


	Efficiencies	Non-storage	Storage	
		savings	savings	
	Base case efficiencies	7.4%	12.8%	
A.	Improve DC-house power converter efficiencies	9.3%	13.7%	
В.	Improve AC-house AC/DC appliance converters efficiencies	4.0%	9.3%	

> Given that technology improvements are likely to proceed together, the relative effects are likely to cancel each other out.


2. Consider Partial Load Conditions


NO STORAGE

2. Consider Partial Load Conditions

2. Consider Partial Load Conditions

(more realistic estimate)

Modeling Outline

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- > Results
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- Discussion & future research recommendations

Conclusions

The following had a negligible effect on Direct-DC savings:

- Climate
- Load shifting
- EV load (assuming night-time charging)

What did matter

- Timing of load versus insolation
 - high potential for large daytime loads
 - space cooling and daytime EV charging (commercial)
- Relative conversion efficiencies
 - of the AC and DC power system components and the load
- Part load efficiencies

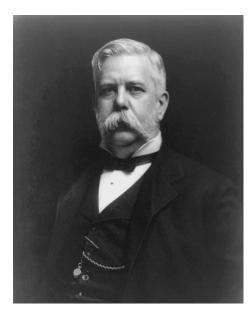
Major Findings

- Essentially all end-uses are DC-compatible
 - Switching to DC-internal appliances will result in major savings ~35% (whether they are run on AC or DC)
 - Trend is already occurring
- Direct-DC could save energy in netmetered houses with PV
 - Modest without storage (~5%).
 - Meaningful with storage (~9% or more)

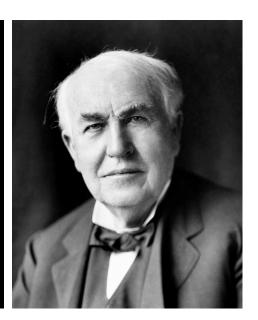
Modeling Outline

- > Introduction
 - Background
 - Why use direct-DC in residential buildings?
 - Objectives
- > Methods
 - Overview
 - Model inputs
 - Model development
 - Model scenarios
- **Results**
 - All scenarios
 - Sensitivity analysis
- **Conclusions**
- Discussion & future research recommendations

Discussion

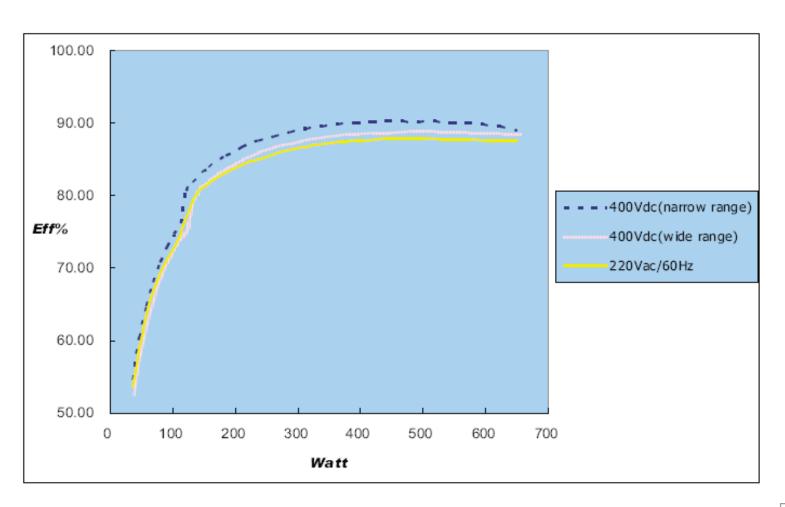

- Results consistent with but not directly comparable with the results of others
 - Baek et al 2010 (University of Seoul) 1-3% savings
 - Considered temporally variable load, but not net-metered
 - Savage et al 2010 (Yale Study) 25% savings
 - Considers portion of load, some DC-internal, not timing
 - Arthur D Little 2010 (NEDO, Japan) 5 25% savings
 - Various scenarios of implementation including controls and DC-internal effects

Discussion


Priorities for Future Work

- Model commercial sector (larger direct-DC savings, better coincidence between sun and load)
- ➤ Better load simulation (real loads are spiky and timing of load matters)—should reduce estimated savings potential

To be continued?


EVossos@lbl.gov Kgarbesi@lbl.gov

ADDITIONAL INFORMATION

Storage System Performance in the AC and DC Houses

		Cooling	Percent of ti mestorage is at minimum capacity		ti mes is maxi	ent of torage at mum icity	co in cide PV l servic	of non- ent with oads ed by rage	Percent of excess PV power sent to storage	
#	CITIES	fracti on	AC	DC	AC	DC	AC	DC	AC	DC
1	Phoenix	66%	33%	28%	18%	21%	42%	46%	54%	48%
2	Tampa	56%	34%	27%	12%	16%	57%	65%	73%	65%
3	Houston	48%	32%	24%	13%	15%	57%	66%	73%	6 7%
4	Fort Worth	43%	30%	21%	11%	13%	58%	6 8%	74%	70%
5	Sacramento	32%	32%	22%	6%	9%	6 8%	78%	87%	80%
6	Atlanta	28%	25%	16%	6%	9%	6 8%	79%	87%	81%
7	Lexington	17%	27%	17%	6%	8%	6 8%	80%	88%	81%
8	Medford	17%	34%	23%	9%	10%	6 3%	73%	81%	75%
9	Los Ang el es	15%	26%	14%	3%	5%	74%	86%	95%	88%
10	New York	11%	25%	15%	4%	7%	72%	82%	92%	84%
11	Denver	10%	24%	13%	5%	7%	73%	85%	94%	87%
12	Helena	9%	28%	20%	8%	11%	64%	73%	82%	75%
13	Chi cag o	8%	28%	17%	7%	9%	6 7%	77%	86%	79%
14	Seatt le	3%	29%	24%	8%	10%	6 0%	64%	77%	67%
	AVERAGES:		29%	20%	8%	11%	64%	73%	82%	75%
Standard Deviati on		3%	5%	4%	4%	8%	11%	11%	11%	

DC/DC Power Supply Efficiency Curve

Appliance	kWh/yr in 2010	Assumed Replacement Technology	Energy Savings	AC-DC Conv.Eff
Central Air Conditi oners	1328	DC motor with variable speed	47%	89%
(SEER)		compressor and fans		
Room Air Conditi oners	235	DC motor with variable speed	34%	89%
(EER)		compressor and fans		
Electric Heat Pumps (SEER) AC	355	unchanged	0%	88%
Geothermal Heat Pumps for AC	10	unchanged	0%	88%
Electric Clothes Dryers	677	heat pump	50%	89%
Electric Secondary Space Heaters	68	unchanged	0%	89%
Dishwashers	232	controls and DC compati ble motor	51%	88%
Electric Water Heaters (EF)	1128	heat pump	50%	88%
Other Electric Space	463	heat pump	50%	88%
Heaters				
Spas	72	heat pump	50%	88%
Electric Cooking	273	Inducti on cooktops	12%	88%
Equipments 5/				

Electric Heat Pumps (HSPF) for Heating	18 5	unchanged	0%	88%
Geothermal Heat Pumps	7	unchanged	0%	88%
Solar Water Heaters	3	unchanged	0%	88%
Refrigerators (kWh per year 6/)	930	assuming 85% standard-size @587kWh AEU has EURF 0.49 and 15% compact @331kWh AEU has EURF 0.25	53%	87%
Freezers (kWh per year 6/)	199	assuming 80% standard-size @565kWh AEU has EURF 0.47 and 20% compact @246kWh AEU has EURF 0.48	53%	87%
Furnace Fans and Boiler Circulati on Pumps	3 66	Brushless DCPM variable speed	30%	87%
Ceiling Fans	158	Brushless DCPM variable speed motor	30%	87%
Clothes Washers	83	Brushless DCPM variable speed motor	30%	87%
Electric Other	1468	unchanged	0%	87%

Microwave Ovens	114	unchanged	0%	87%
Coff ee Makers	36	unchanged	0%	87%
Color Televisions and Set-Top Boxes	938	unchanged	0%	85%
Security Systems	17	unchanged	0%	83%
Lighti ngncandescent	1370	14LPW goes to CFL (electronic ballast) @52LPW	73%	82%
Lighti ngRefl ector	216	15LPW goes to CFL (electronic ballast) @52LPW	71%	82%
Lighti ngTorchiere	89	assuming 80% incandescent @14LPW goes to CFL @52LPW and 20% CFL stays the same	69%	82%
Lighti ng luorescent	148	assuming 10% linear @83LPW goes to 100LPW and 90% CFL @52LPW stays the same	1%	82%
Personal Computers and Related Equipment	473	unchanged	0%	80%
Rechargeable Electronics	78	unchanged	0%	80%
Home Audio	100	unchanged	0%	79%
DV Ds/V CRs	217	unchanged	0%	69%